Math, asked by tarininandi, 10 months ago

if a is equal to root 5 + 1 / root 5 minus 1 and b is equal to root 5 - 1 / 5 + 1 then a minus b whole cube divided by a plus b the whole cube equal to how​

Answers

Answered by gurleen2717
1

Answer:

Hey mate!

_______________________

Given :

x = 9 - 4 \sqrt{5}x=9−4

5

To find :

x {}^{3} + \frac{1}{x {}^{3} }x

3

+

x

3

1

Solution :

\begin{lgathered}x = 9 - 4 \sqrt{5} \\ \\ \frac{1}{x} = \frac{1}{9 - 4 \sqrt{5}} \times \frac{9 + 4 \sqrt{5}}{9 + 4 \sqrt{5}} \\ \\ \frac{1}{x} = \frac{9 + 4 \sqrt{5} }{(9) {}^{2} - (4 \sqrt{5} ) {}^{2} } \\ \\ \frac{1}{x} = \frac{9 + 4 \sqrt{5} }{81 - 80} \\ \\ \frac{1}{x} = 9 + 4 \sqrt{5}\end{lgathered}

x=9−4

5

x

1

=

9−4

5

1

×

9+4

5

9+4

5

x

1

=

(9)

2

−(4

5

)

2

9+4

5

x

1

=

81−80

9+4

5

x

1

=9+4

5

Now,

\begin{lgathered}x + \frac{1}{x} = 9 - \cancel{4 \sqrt{5} } + 9 + \cancel{4 \sqrt{5}} \\ \\ x + \frac{1}{x} = 9 + 9 \\ \\ x + \frac{1}{x} = 18\end{lgathered}

x+

x

1

=9−

4

5

+9+

4

5

x+

x

1

=9+9

x+

x

1

=18

And, on cubing both sides.

\begin{lgathered}(x + \frac{1}{x} ) {}^{3} = (18){}^{3} \\ \\ x{}^{3} + \frac{1}{x{}^{3} } + 3(x + \frac{1}{x} ) = 5826 \\ \\ x{}^{3} + \frac{1}{x{}^{3} } + 3 \times 18 = 5826 \\ \\ x{}^{3} + \frac{1}{x{}^{3} } + 54 = 5826 \\ \\ x{}^{3} + \frac{1}{x{}^{3} } = 5826 - 54 \\ \\ x{}^{3} + \frac{1}{x{}^{3} } = 5778\end{lgathered}

(x+

x

1

)

3

=(18)

3

x

3

+

x

3

1

+3(x+

x

1

)=5826

x

3

+

x

3

1

+3×18=5826

x

3

+

x

3

1

+54=5826

x

3

+

x

3

1

=5826−54

x

3

+

x

3

1

=5778

Similar questions