Math, asked by narasimharohith780, 11 months ago

If a is equals to 14-6 root 5 then find the value of root a +1 by root a

Answers

Answered by shlokthorat
2

Answer:

the answer you needed

is 4.06

Answered by jitumahi435
2

\sqrt{a} +\dfrac{1}{\sqrt{a}} = \dfrac{15-3\sqrt{5}}{4}

Step-by-step explanation:

We have,

a = 14 - 6\sqrt{5}

To find, \sqrt{a} +\dfrac{1}{\sqrt{a}} = ?

a = 14 - 6\sqrt{5}

⇒ a = 9 + 5 - 6\sqrt{5}

⇒ a = 3^2 + \sqrt{5} ^2 - 2(3)(\sqrt{5})

Using the algebraic identity,

(a-b)^{2} =a^{2}+b^{2} -2ab

⇒ a = (3-\sqrt{5})^2

\sqrt{a} +\dfrac{1}{\sqrt{a}}

= \sqrt{(3-\sqrt{5})^2} +\dfrac{1}{\sqrt{(3-\sqrt{5})^2}}

= (3-\sqrt{5})+\dfrac{1}{(3-\sqrt{5})}

= (3-\sqrt{5})+\dfrac{1}{(3-\sqrt{5})}\times \dfrac{(3+\sqrt{5})}{(3+\sqrt{5})}

= (3-\sqrt{5})+\dfrac{(3+\sqrt{5})}{3^2-\sqrt{5}^2}

Using the algebraic identity,

a^{2} -b^{2} = (a + b)(a - b)

= (3-\sqrt{5})+\dfrac{(3+\sqrt{5})}{9-5}

= (3-\sqrt{5})+\dfrac{(3+\sqrt{5})}{4}

= 3+\dfrac{3}{4}+\dfrac{\sqrt{5} }{4} -\sqrt{5}

= \dfrac{15}{4} -\dfrac{3\sqrt{5}}{4}

= \dfrac{15-3\sqrt{5}}{4}

\sqrt{a} +\dfrac{1}{\sqrt{a}} = \dfrac{15-3\sqrt{5}}{4}

Similar questions