Math, asked by chowkarronanchowkar, 11 months ago

if a is equals to 2 + under root 3 then find a square + 1 upon a square ​

Answers

Answered by BrainlyQueen01
29

Answer:

\boxed{\red{\bf a^2 + \dfrac{1}{a^2} = 14}}

Step-by-step explanation:

Given that -

  • a = 2 + √3

To find :

  • a² + \sf \dfrac{1}{a^2}

Solution :

  \implies \sf a = 2 +  \sqrt{3}

So,

 \sf \implies  \dfrac{1}{a}   =  \dfrac{1}{2 +  \sqrt{3} }

Rationlising the denominator ;

 \sf \implies  \frac{1}{a }=  \frac{1}{2 +  \sqrt{3} }  \times  \frac{2 -  \sqrt{3} }{2 -  \sqrt{3} }  \\  \\ \sf \implies \frac{1}{a} =    \frac{2 -  \sqrt{3} }{(2)^{2} - ( \sqrt{3}) ^{2}   }  \\  \\ \sf \implies  \frac{1}{a}  =  \frac{2 -  \sqrt{3} }{4 - 3}  \\  \\ \sf \implies  \frac{1}{a}  = 2 -  \sqrt{3}

Adding both :

\sf \implies a +  \frac{1}{a}  = 2 +  \sqrt{3}  + 2 -  \sqrt{3}  \\  \\ \sf \implies a +  \frac{1}{a}  =2 + 2 \\  \\ \sf \implies a +  \frac{1}{a}  =4

On squaring both sides :

\sf \implies  (a +  \frac{1}{a})^{2}  =(4) {}^{2}  \\  \\ \sf \implies a +  \frac{1}{a}  = 16 \\  \\\sf \implies {a}^{2}  +  \frac{1}{ {a}^{2} }  + 2. \: a \: . \frac{1}{a}  = 16 \\  \\ \sf \implies {a}^{2}  +  \frac{1}{ {a}^{2} } + 2 = 16 \\  \\ \sf \implies {a}^{2}  +  \frac{1}{ {a}^{2} } = 16 - 2 \\  \\ \sf \implies {a}^{2}  +  \frac{1}{ {a}^{2} } = 14

Hence, the answer is 14.

Similar questions