if a is equals to 3 + 2 under root 2 then find the value of a square + 1 upon
a square
Answers
Answered by
14
hey!
_______
Given x = 3 + 2√2
⇒ x = 2 + 1 + 2√2
⇒ x = (√2)2 + 12+ 2×√2×1
⇒ x = (√2 + 1)2
∴ x = (√2 + 1)
⇒(1/x) = 1/ (√2 + 1)
☆Multiply and divide by (√2 − 1)
⇒(1/x) = (√2 − 1) / [(√2 + 1)(√2 − 1)]
⇒(1/x) = (√2 − 1) / [2 − 1]
∴ (1/x) = (√2 − 1)
= 2√2
hope help u!!
_______
Given x = 3 + 2√2
⇒ x = 2 + 1 + 2√2
⇒ x = (√2)2 + 12+ 2×√2×1
⇒ x = (√2 + 1)2
∴ x = (√2 + 1)
⇒(1/x) = 1/ (√2 + 1)
☆Multiply and divide by (√2 − 1)
⇒(1/x) = (√2 − 1) / [(√2 + 1)(√2 − 1)]
⇒(1/x) = (√2 − 1) / [2 − 1]
∴ (1/x) = (√2 − 1)
= 2√2
hope help u!!
Answered by
7
Here's your answer
a=3+2 root 2
To find
=a square +1/a square equation 1
Put value of a in equation 1
=((3+2 root 2)square +1)/=(3+2 root 2)square
=((9+8)+1)/(9+8)
=17+1/17
=18/17
a=3+2 root 2
To find
=a square +1/a square equation 1
Put value of a in equation 1
=((3+2 root 2)square +1)/=(3+2 root 2)square
=((9+8)+1)/(9+8)
=17+1/17
=18/17
Similar questions