Math, asked by pranita6, 1 year ago

if a is equals to 3 + root 5 upon 2 then find the value of a square + 1 upon a square

Answers

Answered by Manikumarsingh
28

a = 3 +  \frac{ \sqrt{5} }{2}
 {a}^{2}  = 9 +  \frac{5}{4}  + 3 \sqrt{5}
it's may help you

ritikvasu20: Sir iske aage bhi to Karna hair what is the exact value of a square + 1/a square
Answered by aquialaska
55

Answer:

Value of given expression is 7.

Step-by-step explanation:

Given:

a=\frac{3+\sqrt{5}}{2}

To find: a^2+\frac{1}{a^2}

a^2=(\frac{3+\sqrt{5}}{2})^2=\frac{(3+\sqrt{5})^2}{2^2}=\frac{3^2+(\sqrt{5}^2)+2\times3\times\sqrt{5}}{4}=\frac{9+5+6\sqrt{5}}{4}=\frac{14+6\sqrt{5}}{4}=\frac{7+3\sqrt{5}}{2}

Now,

\frac{1}{a^2}=\frac{2}{7+3\sqrt{5}}=\frac{2}{7+3\sqrt{5}}\times\frac{7-3\sqrt{5}}{7-3\sqrt{5}}=\frac{2(7-3\sqrt{5})}{(7+3\sqrt{5})(7-3\sqrt{5})}=\frac{14-6\sqrt{5})}{49+9\times5}=\frac{14-6\sqrt{5}}{4}=\frac{7-3\sqrt{5}}{2}

Consider,

a^2+\frac{1}{a^2}=\frac{7+3\sqrt{5}}{2}+\frac{7-3\sqrt{5}}{2}=\frac{7+3\sqrt{5}+7-3\sqrt{5}}{2}=\frac{14}{2}=7

Therefore, Value of given expression is 7.

Similar questions