Physics, asked by chinu5552, 1 year ago

if a is equals to i + J + 2K and b is equals to -2 i + 3j - 4 k.....find |a×b|​

Answers

Answered by ItSdHrUvSiNgH
6

Explanation:

A = i+j +2k

B = -2i +3j -4k

A×B =

| i j k|

|1 1 2|

|-2 3 -4|

i(-4-6) -j(-4+4) +k(3+2)

-10i +5k

Magnitude of vector

So |a×b| => √(10)^2 +(5)^2

=> √125

=> 15

Answered by Anonymous
5

\huge{\sf{===Answer===}}

Given :-

\large{\sf{\overrightarrow{A} \: = \: \hat{i} \: + \: \hat{j} \: + \: 2\hat{k}}}

\large{\sf{\overrightarrow{B} \: = \: -2\hat{i} \: + \: 3\hat{j} \: - \: 4\hat{k}}}

============================

To find :-

|A × B|

============================

Solution :-

\large{\sf{|A \: \times \: B|}}

⤵⤵⤵

|i j k|

|1 1 2|

|-2 3 -4|

Then,

{\sf{[(1(-4) - 2(3))\hat{i}] \: + \: [2(-2) - 1(-4)\hat{j}] \: + \: [1(3) - 1(-2)\hat{k}]}}

\large{\sf{(-4 -6)\hat{i} \: + \: (-4+4)\hat{j} \: + \: (3+2)\hat{k}}}

\large{\implies}{\boxed{\boxed{\sf{-10\hat{i} \: + \: 0\hat{j} \: + \: 5\hat{k}}}}}

________________________________

Magnitude

\large{\sf{|A \: \times \: B| \: = \: \sqrt{(10)^{2} \: + \: (5)^{2}}}}

\large{\sf{|A \: \times \: B| \: = \: \sqrt{100\: + \: 25}}}

\large{\implies}{\boxed{\boxed{\sf{|A \: \times \: B| \: = \: \sqrt{125}}}}}

Similar questions