Math, asked by saitejstar1618, 4 months ago

If A is hermitian matrix and B skew hermitian matrix , prove that (B + iA) is skew hermitian matrix , full proof​

Answers

Answered by rajiv9290
2

Step-by-step explanation:

If HH be a Hermitian matrix, prove that detHdetH is real number.

If SS be a skew Hermitian matrix of order nn, prove that

(i). if nn be even, then detSdetS is real number;

(ii). if nn be odd, then detSdetS is a purely imaginary number or zero.

Attempt: 1. Let H=P+iQH=P+iQ be a Hermitian matrix, where P,QP,Q are real matrices. Then H¯t=H⟹Pt−iQt=P+iQ⟹Pt=PH¯t=H⟹Pt−iQt=P+iQ⟹Pt=P and Qt−QQt−Q. How can I show that detHdetH is real

Answered by ushmagaur
1

Answer:

The matrix (B+iA) is a Skew-Hermitian matrix.

Step-by-step explanation:

Hermitian matrices: A square matrix A=[a_{ij}] is said to be Hermitian if A^{\theta}=A.

Skew-Hermitian matrices: A square matrix A=[a_{ij}] is said to be Skew-Hermitian if A^{\theta}=-A.

Here, A^{\theta} is the transposed conjugate of the matrix A.

According to the question,

Since A is a Hermitian matrix.

A^{\theta}=A . . . . . (1)

Also, B is a Skew-Hermitian matrix.

B^{\theta}=-B . . . . . (2)

To prove: (B+iA) is a Skew-Hermitian matrix, i.e.,

(B+iA)^{\theta}=-(B+iA)

Consider the matrix as follows:

(B+iA)

Taking the conjugate as follows:

\overline{(B+iA)}

Simplify as follows:

\overline{(B+iA)}=\overline{B}-i \overline{A}

Take transpose both the sides.

(\overline{B+iA})^T=(\overline{B})^T-(i \overline{A})^T

({B+iA})^{\theta}={B}^{\theta}-i{A}^{\theta} . . . . . (3) (Transpose conjugate)

Now, substitute the value of B^{\theta} and A^{\theta} in (3) as follows:

({B+iA})^{\theta}=-B-iA (From (1) and (2))

({B+iA})^{\theta}=-(B+iA)

Thus, (B+iA) is Skew-Hermitian matrix.

Hence proved.

#SPJ2

Similar questions