if A is hermitian such that A^2=0 show that A=0
Answers
Answered by
3
This is a proof question and I am not sure how to prove it. It is obviously true if you start with A=0and square it.
A²=0
then AA=0
multiply both sides by A-¹
AAA-¹= 0A-¹
I A = 0
but the zero matrix is not invertible and that it was not among the given conditions.
A²=0
then AA=0
multiply both sides by A-¹
AAA-¹= 0A-¹
I A = 0
but the zero matrix is not invertible and that it was not among the given conditions.
Attachments:

aniketkatiyar1pdgi1k:
i am forget
Similar questions