Math, asked by sathiyapriya769, 1 year ago

If A is less than B, sin A= cos B, then find cot B and tan A

Answers

Answered by Anonymous
17

\Huge{\underline{\underline{\mathfrak{Answer \colon}}}}

Given

  • A is less than B : A < B

  • sin A = cos B

We know that,

sin30 = cos60 = 1/2

Here,

A = 30° and B = 60°

and, A,B < π/2

To find:

cot B and tan A

Now,

tan A = tan30° = 1/√3

Also,

cot B = cot60° = 1/√3

Thus,cotB = tanA = 1/√3

Answered by Shreya091
132

\huge{\bold{\underline{\underline{Answer:-}}}}

\large{\bold{\underline{\underline{Given:-}}}}

\large\sf\ A\: is \: less \: than \: B

\large\sf\ SinA= SinB

\large{\bold{\underline{\underline{To find:-}}}}

\large\sf\ CotB =?

\large\sf\ TanA=?

\large{\bf{\underline{\underline{Step-by-step-explanation:-}}}}

Since,According to Trigonometric ratios;

\large\purple{\boxed{\sf Sin30 = Cos60=\frac{1}{2} ---(eq1.) }}

Here,it is given that ;

\large\purple{\boxed{\sf SinA=SinB ----(eq2.) }}

from equation 1 and 2 ,we can conclude that ;

\large\implies\bf\ A=30

\large\implies\bf\ B=60

•°•Now ,

we have to find ;

\large\sf\ CotB =?

So,

\large\implies\sf\ CotB =Cot60

\large\implies\sf\ CotB= \frac {1}{ \sqrt 3}

•°•Now,we have to find

\large\implies\sf\ TanA=?

So,

\large\implies\sf\ TanA= Tan30

\large\implies\sf\ TanA= \frac {1}{ \sqrt 3}

\mathbb\pink{Thanks...}

Similar questions