Math, asked by sainikshith52, 7 months ago

If A is not an integral multiple of , 2



then prove that

(i) tan A + cot A = 2 cosec 2A (ii) cot A - tan A= 2 cot 2A​

Answers

Answered by amitnrw
1

Given : tan A + cot A = 2 cosec2A

cotA - tan A = 2 cot2A

To Find :  Prove

Solution:

tan A + cot A = 2 cosec2A

LHS

= tan A + cot A

= SinA/cosA + cosA/sinA

= (sin²A + cos²A)/cosAsinA

= 1/cosA.sinA

=2/2sinA.cosA

= 2/sin2A

= 2cosec2A

= RHS

QED

cotA - tan A = 2 cot2A

LHS

= cotA - tanA

= cosA/sinA - sinA/cosA

= (cos²A - sin²A)/sinA.cosA

= cos2A/sinA.cosA

= 2cos2A/2sinA.cosA

= 2cos2A/sin2A

= 2cot2A

= RHS

QED

Learn More:

Prove that sinα + sinβ + sinγ − sin(α + β+ γ) = 4sin(α+β/2)sin(β+γ

brainly.in/question/10480120

Ifsin 990° sin 780° sin 390°+=K(tan 405° – tan 360°) then Kicos 540 ...

brainly.in/question/22239477

Maximum value of sin(cos(tanx)) is(1) sint (2)

brainly.in/question/11761816

evaluate cot[90-theta].sin[90-theta] / sin theta+cot 40/tan 50 - [cos ...

brainly.in/question/2769339

Similar questions