Math, asked by kumarvishal26701, 1 month ago

if a is not equal to 0 a-1/a = 3 find a cube + 1/a cube​

Answers

Answered by Sagar9040
0

Answer:

11 and 36

Step-by-step explanation:

     ⇒ a - 1 / a = 3

Square on both sides:

⇒ ( a - 1 / a )^2 = 3^2

⇒ a^2 + 1 / a^2 - 2( a * 1 / a ) = 9

⇒ a^2 + 1 / a^2 - 2( 1 ) = 9

⇒ a^2 + 1 / a^2 - 2 = 9

⇒ a^2 + 1 / a^2 = 9 + 2 = 11

        Cube on both sides of a - 1 / a:

⇒ ( a - 1 / a )^3 = 3^3

⇒ a^3 - 1 / a^3 - 3( a * 1 / a )( a - 1 / a ) = 27

⇒ a^3 - 1 / a^3 - 3( 1 )( a - 1 / a ) = 27

⇒ a^3 - 1 / a^3 - 3( 3 ) = 27

⇒ a^3 - 1 / a^3 - 9 = 27

⇒ a^3 - 1 / a^3 = 27 + 9 = 36

Similar questions