Math, asked by hs583132, 10 months ago

If a is not equal to 0 and a-1/a=3; find : (1) a^2 +1/a^2 (2) a^3-1/a^3

Answers

Answered by abhi569
13

Answer:

11 and 36

Step-by-step explanation:

      ⇒ a - 1 / a = 3

 Square on both sides:

⇒ ( a - 1 / a )^2 = 3^2

⇒ a^2 + 1 / a^2 - 2( a * 1 / a ) = 9

⇒ a^2 + 1 / a^2 - 2( 1 ) = 9

⇒ a^2 + 1 / a^2 - 2 = 9

a^2 + 1 / a^2 = 9 + 2 = 11

         Cube on both sides of a - 1 / a:

⇒ ( a - 1 / a )^3 = 3^3

⇒ a^3 - 1 / a^3 - 3( a * 1 / a )( a - 1 / a ) = 27

⇒ a^3 - 1 / a^3 - 3( 1 )( a - 1 / a ) = 27

⇒ a^3 - 1 / a^3 - 3( 3 ) = 27

⇒ a^3 - 1 / a^3 - 9 = 27

a^3 - 1 / a^3 = 27 + 9 = 36

Answered by BrainlyMT
8

↠\red{a -  \frac{1}{a}  = 3} \\↠ \red{(  a -  \frac{1}{a}) {}^{2}  =  {3}^{2} } \\↠  {a}^{2}  +  \frac{1}{ {a}^{2} }  - 2 \times a \times  \frac{1}{a}  = 9 \\↠  {a}^{2}  +  \frac{1}{ {a}^{2} }  - 2 = 9 \\ ↠ {a}^{2}  +  \frac{1}{ {a}^{2} }  = 9 + 2 = 11

↠\red{a -  \frac{1}{a}  = 3} \\↠ \red{(a -  \frac{1}{a})^{3}  = {3}^{3}} \\↠ {a}^{3} -  \frac{1}{{a}^{3}} - 3\times a\times \frac{1}{a} (a- \frac{1}{a} )= 27 \\↠ {a}^{3} -  \frac{1}{{a}^{3}} -3(3)=27 \\ ↠{a}^{3} -  \frac{1}{{a}^{3}} -9=27 \\ ↠{a}^{3} -  \frac{1}{{a}^{3}} =27+9=36

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\red{{a}^{2}  +  \frac{1}{ {a}^{2} }  = 9 + 2 = 11} \\

\red{{a}^{3} -  \frac{1}{{a}^{3}} =27+9=36} \\

Similar questions