Math, asked by tanishkabishnoi698, 3 months ago

if a is not equal to 0 and a - ¹/a =4 find: i) a²+¹/a² ii) a⁴+¹/a⁴ iii) a³ -¹/a³​

Answers

Answered by mathdude500
5

Basic Identities Used :-

\boxed{ \bf \: {(x + y)}^{2} =  {x}^{2} + 2xy +  {y}^{2}}

\boxed{ \bf \: {(x  -  y)}^{2} =  {x}^{2}  -  2xy +  {y}^{2}}

\boxed{ \bf \: {(x  -  y)}^{3} =  {x}^{3}  -  3xy(x - y)  -   {y}^{3}}

Solution :-

\rm :\longmapsto\:a - \dfrac{1}{a} = 4

On squaring both sides, we get

\rm :\longmapsto\: \bigg(a - \dfrac{1}{a} \bigg)^{2}  =  {(4)}^{2}

\rm :\longmapsto\: {a}^{2} + \dfrac{1}{ {a}^{2} }  - 2 \times  \cancel{a} \times \dfrac{1}{\cancel{a}} = 16

\rm :\longmapsto\: {a}^{2} + \dfrac{1}{ {a}^{2} }  - 2  = 16

\rm :\longmapsto\: {a}^{2} + \dfrac{1}{ {a}^{2} } = 16 + 2

\rm :\implies\:\boxed{ \bf \: \: {a}^{2} + \dfrac{1}{ {a}^{2} } = 18}

Again on squaring both sides, we get

\rm :\longmapsto\: \bigg( {a}^{2}   +  \dfrac{1}{ {a}^{2} } \bigg)^{2}  =  {(18)}^{2}

\rm :\longmapsto\: {a}^{4} + \dfrac{1}{ {a}^{4} }  + 2 \times  \cancel{ {a}^{2} } \times \dfrac{1}{\cancel{ {a}^{2} }} = 324

\rm :\longmapsto\: {a}^{4} + \dfrac{1}{ {a}^{4} }  + 2  = 324

\rm :\longmapsto\: {a}^{4} + \dfrac{1}{ {a}^{4} } = 324 - 2

\rm :\implies\:\boxed{ \bf\: {a}^{4} + \dfrac{1}{ {a}^{4} } = 322}

Now,

As

\rm :\longmapsto\:a - \dfrac{1}{a} = 4

on Cubing both sides, we get

\rm :\longmapsto\: \bigg(a - \dfrac{1}{a} \bigg)^{3}  =  {(4)}^{3}

\rm :\longmapsto\: {a}^{3}  -  \dfrac{1}{ {a}^{3} }  - 3 \times  \cancel{a} \times \dfrac{1}{\cancel{a}}\bigg(a - \dfrac{1}{a}\bigg)  = 64

\rm :\longmapsto\: {a}^{3}  -  \dfrac{1}{ {a}^{3} }  - 3 \times 4  = 64

\rm :\longmapsto\: {a}^{3}  -  \dfrac{1}{ {a}^{3} }  - 12  = 64

\rm :\longmapsto\: {a}^{3}  -  \dfrac{1}{ {a}^{3} }   = 64 + 12

\rm :\implies \boxed{ \bf\: {a}^{3}  -  \dfrac{1}{ {a}^{3} }   = 76}

Additional Information :-

More Identities to know:

  • (a + b)² = a² + 2ab + b²

  • (a - b)² = a² - 2ab + b²

  • a² - b² = (a + b)(a - b)

  • (a + b)² = (a - b)² + 4ab

  • (a - b)² = (a + b)² - 4ab

  • (a + b)² + (a - b)² = 2(a² + b²)

  • (a + b)³ = a³ + b³ + 3ab(a + b)

  • (a - b)³ = a³ - b³ - 3ab(a - b)

Similar questions