If a is not equal to b is not equal to c then prove that the points a a square b b square and c c square can never be collinear
Answers
This is your answer
Please mark it as Brainliest answer
(a , a²) , (b , b²) (c , c²) are never coliinear if a ≠ c or b ≠ c or b ≠ a
Step-by-step explanation:
(a , a²) , (b , b²) (c , c²) are coliinear if
Area = 0
iff (1/2) | a ( b² - c²) + b(c² - a²) + c(a² - b²) | = 0
iff a ( b² - c²) + b(c² - a²) + c(a² - b²) = 0
iff ab² - ac² + bc² - ba² + ca² - cb² = 0
iff b²(a - c) + ac(a - c) - b(a² - c²) = 0
iff (a - c)(b² + ac) - b(a + c)(a - c) = 0
iff (a - c) (b² + ac - ba - bc) = 0
iff (a - c) ( b(b - a) - c(b - a) ) = 0
iff (a - c)(b - c)(b - a) = 0
iff a = c or b = c or b = a
Hence
(a , a²) , (b , b²) (c , c²) are never coliinear if a ≠ c or b ≠ c or b ≠ a
Learn more:
prove that points (a,a2) (b,b2) and (c,c2) are never be collinear ...
https://brainly.in/question/2602646
If a≠b≠0,prove that (a,a²),(b,b²),(0,0) will not be collinear. (class 10 ...
https://brainly.in/question/2089746