Math, asked by devawasthi25, 9 months ago

if A is subset of B and x not belongs to B, then x not belongs to A is true then prove it

Answers

Answered by shadowsabers03
9

Since A\subseteq B, we have,

\longrightarrow B=A\cup(B-A)\quad\quad\dots(1)

Given,

\longrightarrow x\notin B

From (1),

\longrightarrow x\notin [A\cup(B-A)]

This also means,

\longrightarrow x\in [A\cup(B-A)]'

By De Morgan's Theorem,

\longrightarrow x\in [A'\cap(B-A)']

Expanding it we get,

\longrightarrow x\in A'\ \land\ x\in(B-A)'

Or,

\longrightarrow x\notin A\ \land\ x\notin(B-A)

The statements implies that,

\longrightarrow\underline{\underline{x\notin A}}

else it makes the statement x\notin B false.

Hence Proved!

Similar questions