Math, asked by Grandsato6988, 9 months ago

If a is the fourth quadrant and cos a = 5/13 then find the value of 13sin a + 5 sec a / 5 tan a + 6 cosec a​

Answers

Answered by MaheswariS
11

\textbf{Given:}

\text{$cosA=\dfrac{5}{13}$ and A is in 4 th quadrant}

\textbf{To find:}

\text{The value of $\dfrac{13\,sinA+5\,secA}{5\,tanA+6\,cosecA}$}

\textbf{Solution:}

\text{Consider,}

sin^2A=1-cos^2A

sin^2A=1-(\dfrac{5}{13})^2

sin^2A=1-\dfrac{25}{169}

sin^2A=\dfrac{169-25}{169}

sin^2A=\dfrac{144}{169}

sinA=\pm\,\dfrac{12}{13}

\text{Since A lies in 4 th quadrant, $sinA$ is negative}

\implies\,sinA=\dfrac{-12}{13}

tanA=\dfrac{sinA}{cosA}

=\dfrac{\dfrac{-12}{13}}{\dfrac{5}{13}}

=\dfrac{-12}{5}

\text{Now}

\dfrac{13\,sinA+5\,secA}{5\,tanA+6\,cosecA}

=\dfrac{13(\frac{-12}{13})+5(\frac{13}{5})}{5(\frac{-12}{5})+6(\frac{-13}{12})}

=\dfrac{-12+13}{-12-\frac{13}{2}}

=\dfrac{1}{\frac{-24-13}{2}}

=\dfrac{1}{\frac{-37}{2}}

=\dfrac{-2}{37}

\textbf{Answer:}

\textbf{The value of $\bf\dfrac{13\,sinA+5\,secA}{5\,tanA+6\,cosecA}$ is $\bf\dfrac{-2}{37}$}

Find more:

1.If 6 tan A -5 = 0 find the value of( 3 Sin A - Cos A) / (5 Cos A + 9 sin A)

https://brainly.in/question/5331430

2.CotA+cosecA=3,then find sinA=?​

https://brainly.in/question/14998903#

3.If 13 sin A= 12 find sec A - tan A

https://brainly.in/question/15409061

Answered by 11manjuapril
6

here's ur answer..

hope it helps u

Attachments:
Similar questions