If a liquid takes 30 sec in cooling from 80°C to 70°C and 70sec in cooling from 60°C to 50°C then find the room temperature
Answers
Answered by
47
T₀ = room temperature, T = temperature of the liquid at time t
dQ/dt = dT/dt = rate of cooling = - k [T - T₀] --- (1)
dT/[T - T₀] = - k dt
=> Ln [(T₂ - T₀) / (T₁ - T₀)] = - k t
(T₂ - T₀) = (T₁ - T₀) exp(- k t)
Given: t = 30 sec, T₂ = 70°C , T₁ = 80⁰C
=> Ln [(70 - T₀)/(80 - T₀)] = - k *30 --- (2)
Also, t = 70s, T₂ = 50⁰C, T₁ = 60⁰C
=> Ln [(50 - T₀) /(60 - T₀)] = -k * 70 ---- (3)
This way it is difficult to solve the two equations (2) and (3). So we use an approximate method not involving Log and Exp functions.
(1) => dT/dt = - k (T - T₀)
dT = 70 - 80 = -10°C, dt = 30 sec, T = avg temperature = 75°C
So - 10°C/30sec = - k (75°C - T₀)
=> 3 k (75 - T₀) = 1 ---- (4)
Also, dT = 50 -60 = -10°C, dt = 70sec, T = avg temperature = 55°C
So -10°C/70sec = - k (55 - T₀)
=> 7 k (55 - T₀) = 1 ---- (5)
(4) / (5) => 3 (75 - T₀) = 7 (55 - T₀)
4 T₀ = 385 - 225 = 160°C
T₀ = 40 ⁰C
dQ/dt = dT/dt = rate of cooling = - k [T - T₀] --- (1)
dT/[T - T₀] = - k dt
=> Ln [(T₂ - T₀) / (T₁ - T₀)] = - k t
(T₂ - T₀) = (T₁ - T₀) exp(- k t)
Given: t = 30 sec, T₂ = 70°C , T₁ = 80⁰C
=> Ln [(70 - T₀)/(80 - T₀)] = - k *30 --- (2)
Also, t = 70s, T₂ = 50⁰C, T₁ = 60⁰C
=> Ln [(50 - T₀) /(60 - T₀)] = -k * 70 ---- (3)
This way it is difficult to solve the two equations (2) and (3). So we use an approximate method not involving Log and Exp functions.
(1) => dT/dt = - k (T - T₀)
dT = 70 - 80 = -10°C, dt = 30 sec, T = avg temperature = 75°C
So - 10°C/30sec = - k (75°C - T₀)
=> 3 k (75 - T₀) = 1 ---- (4)
Also, dT = 50 -60 = -10°C, dt = 70sec, T = avg temperature = 55°C
So -10°C/70sec = - k (55 - T₀)
=> 7 k (55 - T₀) = 1 ---- (5)
(4) / (5) => 3 (75 - T₀) = 7 (55 - T₀)
4 T₀ = 385 - 225 = 160°C
T₀ = 40 ⁰C
kvnmurty:
Clik on red heart thanks above pls
Answered by
3
hhhhjhff did try yyyyyyyyrrr
Similar questions