CBSE BOARD XII, asked by ishanpriyadarshi, 1 year ago

If a=log12 base 24,b=log24 base 36,c=log 36 base 48,Then show that 1+abc=2bc

Answers

Answered by pulakmath007
6

SOLUTION

GIVEN

 \sf{a =  log_{24}(12) \: , \: b =  log_{36}(24)  \:,  \:  c =  log_{48}(36) }

TO PROVE

  \sf{1 + abc = 2bc}

PROOF

LHS

 \sf{ = 1 + abc }

 \sf{ = 1 +  log_{24}(12)  \times  log_{36}(24)   \times   log_{48}(36) }

 \displaystyle \sf{ = 1 +   \frac{ log(12) }{ log(24) } \times  \frac{ log(24) }{ log(36) } \times \frac{ log(36) }{ log(48) }}

 \displaystyle \sf{ = 1 +   \frac{ log(12) }{ log(48) } }

 \displaystyle \sf{ = 1 +   log_{48}(12)  }

 \displaystyle \sf{ =  log_{48}(48)  +   log_{48}(12)  }

 \displaystyle \sf{ =  log_{48}(48 \times 12)   }

 \displaystyle \sf{ =  log_{48}(4 \times 12 \times 12)   }

 \displaystyle \sf{ =  log_{48}( {2}^{2}  \times  {12}^{2} )   }

 \displaystyle \sf{ =  log_{48}( {24}^{2}   )   }

 \displaystyle \sf{ =  2log_{48}( {24}  )   }

RHS

\displaystyle \sf{ =  2log_{36}( {24}  ) \times  log_{48}( 36)    }

\displaystyle \sf{ =  2 \times  \frac{  log(24)  }{ log(36) }  \times  \frac{ log(36) }{ log(48) } }

\displaystyle \sf{ =  2 \times  \frac{  log(24)  }{ log(48) }   }

\displaystyle \sf{ =  2  log_{48}(24)  }

Thus LHS = RHS

Hence proved

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. If log (0.0007392)=-3.1313 , then find log(73.92)

https://brainly.in/question/21121422

2.If 2log((x+y)/(4))=log x+log y then find the value of (x)/(y)+(y)/(x)

https://brainly.in/question/24081206

Similar questions