Math, asked by KrishnaHaresh, 11 hours ago

If A(log28, log525) and B(log1010, log10100), then the midpoint of AB is​

Answers

Answered by sabinalaskar017
1

Answer:

SOLUTION

TO DETERMINE

The mid point of AB, where

\sf{A ( log_{2}8, log_{5}25 ) \: \: B( log_{10}10, log_{10}100 )}A(log

2

8,log

5

25)B(log

10

10,log

10

100)

FORMULA TO BE IMPLEMENTED

For the given two points

\sf{A( x_1 , y_1) \: \: and \: \: B( x_2 , y_2)}A(x

1

,y

1

)andB(x

2

,y

2

)

The midpoint of the line AB is

\displaystyle \sf{ \bigg( \frac{x_1 + x_2}{2} , \frac{y_1 + y_2}{2} \bigg)}(

2

x

1

+x

2

,

2

y

1

+y

2

)

EVALUATION

Here the given points are

\sf{A ( log_{2}8, log_{5}25 ) \: \: B( log_{10}10, log_{10}100 )}A(log

2

8,log

5

25)B(log

10

10,log

10

100)

Now

\sf{ log_{2}(8) = log_{2}( {2}^{3} ) = 3 \: log_{2}(2) = 3 }log

2

(8)=log

2

(2

3

)=3log

2

(2)=3

\sf{ log_{5}(25) = log_{5}( {5}^{2} ) = 2 \: log_{5}(5) = 2 }log

5

(25)=log

5

(5

2

)=2log

5

(5)=2

\sf{ log_{10}(10) = 1 }log

10

(10)=1

\sf{ log_{10}(100) = log_{10}( {10}^{2} ) = 2 \: log_{10}(10) = 2 }log

10

(100)=log

10

(10

2

)=2log

10

(10)=2

So the points are simplified to

A (3,2) , B (1,2)

Hence the required midpoint is

\displaystyle \sf{ = \bigg( \frac{3 + 1}{2} , \frac{2 + 2}{2} \bigg)}=(

2

3+1

,

2

2+2

)

\displaystyle \sf{ = \bigg( \frac{4}{2} , \frac{4}{2} \bigg)}=(

2

4

,

2

4

)

\displaystyle \sf{ = (2 , 2)}=(2,2)

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. locate the following points on the cartesian plane(aEr) (0,a),(a,0),(-a, 0),(0,-a)...

https://brainly.in/question/26822338

2. Distance of a point A(-2,0) from x-axis is _______ units.

please mark me as brainliest

Similar questions