Math, asked by pritam20ps05, 11 months ago

If a = logx (yz), b = logy (zx), c = logz (xy) then prove that, 1/(1+a)+1/(1+b)+1/(1+c) =1​

Answers

Answered by tejasshende326
6

answer to the question is

Attachments:
Answered by sonuvuce
7

The proof is given below

Given

a=\log_x(yz)          .................. (1)

b=\log_y(zx)          .................. (2)

c=\log_z(xy)          .................. (3)

From eq (1)

a+1=\log_x(yz)+1

\implies a+1=\log_x(yz)+\log_xx

\implies a+1=\log_x(xyz)

\implies \frac{1}{a+1}=\frac{1}{\log_xxyz}

Similarly, from eq (2) and (3)

\implies \frac{1}{b+1}=\frac{1}{\log_yxyz}

\implies \frac{1}{c+1}=\frac{1}{\log_zxyz}

Thus,

 \frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}

=\frac{1}{\log_xxyz}+\frac{1}{\log_yxyz}+\frac{1}{\log_zxyz}

=\frac{1}{\log xyz/\log x}+\frac{1}{\log xyz/\log y}+\frac{1}{\log xyz/\log z}

=\frac{\log x}{\log xyz}+\frac{\log y}{\log xyz}+\frac{\log z}{\log xyz}

=\frac{\log x+\log y+\log z}{\log xyz}

=\frac{\log xyz}{\log xyz}

=1                                    (Proved)

Hope this answer is helpful

Know More:

Q: If log (x-y)/2 =1/2(log x+log y) prove that x^2 +y^2=6xy

Click Here: https://brainly.in/question/2447037

Q: If log(p+q/3)=1/2(log p + log q) prove that p² + q² =7pq

Click Here: https://brainly.in/question/13960139

Similar questions