Math, asked by lavanyajune3, 9 months ago

If a^m = b^n = (ab)^mn then m+n is

Answers

Answered by arvindhan14
6

Answer:

1

Step-by-step explanation:

 {a}^{m}  =  {b}^{n}  =   {(ab)}^{mn}  = k

a  =  {k}^{ \frac{1}{m} }  \:  \:  \:  \: b =  {k}^{ \frac{1}{n} }  \:  \:  \:  \: ab  =  \:  {k}^{ \frac{1}{mn} }

ab \:  =  \:   {k}^{ \frac{1}{m} }  \times   {k}^{ \frac{1}{n} }  =   {k}^{ \frac{1}{m}  +  \frac{1}{n} }

ab \:  =  \: ab

 {k}^{ \frac{1}{m}  +   \frac{1}{n}  }  \:  =  \:  {k}^{ \frac{1}{mn} }

Bases are same, So we can equate the powers.

 \frac{1}{m}  +  \frac{1}{n} \:   =  \:  \frac{1}{mn}

 \frac{n + m}{mn}  =  \frac{1}{mn}

m + n \:  =  \:  \frac{1 \times mn}{mn}

m + n \:  =  \: 1

Hope this helps

Please mark as brainliest

Similar questions