Math, asked by chocophilic02, 10 months ago

If a^m^n = (a^m)^n then the value of m in the terms of n is​

Attachments:

Answers

Answered by BrainlyTornado
5

QUESTION:

If \sf { {a}^{m} }^{n}  =  { ({a}^{m} })^{n}, then find the value of m in terms of n

ANSWER:

  • \sf m=\sqrt[n]{mn}

GIVEN:

  • The value of m in terms of n is \sf { {a}^{m} }^{n}  =  { ({a}^{m} })^{n}

TO FIND:

  • The value of m in terms of n.

EXPLANATION:

\sf { {a}^{m} }^{n}  =  { ({a}^{m} })^{n}

\sf { {a}^{m} }^{n}  = {a}^{mn}

As the bases are same equate the powers.

\sf {m}^n={mn}

\boxed{\bold{\gray{when \ x^y =z,\ x = \sqrt[y]{z}}}}

\sf m=\sqrt[n]{mn}

Some other formulas:

\boxed{\bold{\red{\large{\dfrac{x^m}{x^n}=x^{m-n}}}}}

\boxed{\bold{\blue{\large{{x^m}{x^n}=x^{m+n}}}}}

\boxed{\bold{\green{\large{(A+B)^2=A^2 + 2AB + B^2}}}}

\boxed{\bold{\orange{\large{(A-B)^2=A^2 -2AB + B^2}}}}

\boxed{\bold{\pink{\large{A^2+B^2=(A+B)^2-2AB}}}}

\boxed{\bold{\purple{\large{A^2-B^2=(A+B)(A-B)}}}}

Answered by Anonymous
5

\mathcal \red {{ \odot \_  \odot\: ANSWER:-}} </strong></p><p></p><p>\\ \\</p><p></p><p><strong>[tex]  \sf { {a}^{m} }^{n}  =  ({a}^{m})^n \\  \\  \sf   { {a}^{m} }^{n}  =  {a}^{mn}  \\  \\  \sf \therefore   \:  {m}^{n}  = mn \\  \\  \sf m =  \sqrt[n]{mn}

Similar questions