Math, asked by Anonymous, 1 month ago

If A matrix a11 is 1, a12 is 2, a13 is 3, a21 is 4,a22 is 5, a23 is 6 and B matrix is a11 is 7, a12 is 10, a21 is 8, a22 is 11, a31 is 9, a32 is 12. Find the values of AB and BA. ​

Answers

Answered by rishikeshgohil1569
2

Answer:

l____________________

ज़िन्दगी... बहुत खूबसूरत है,

कभी हंसाती है, तो कभी रुलाती है,

लेकिन जो ज़िन्दगी की भीड़ में खुश रहता है,

ज़िन्दगी उसी के आगे सिर झुकाती है।

_____________________

Answered by ajr111
20

Answer:

AB =  \left[\begin{array}{ccc}50&68&0\\122&167&0\\0&0&0\end{array}\right] \&  \ BA = \left[\begin{array}{ccc}47&64&81\\52&71&90\\57&78&99\end{array}\right]

Step-by-step explanation:

Given :

A = \left[\begin{array}{ccc}1&2&3\\4&5&6\\0&0&0\end{array}\right] ; B = \left[\begin{array}{ccc}7&10&0\\8&11&0\\9&12&0\end{array}\right]

To Find :

AB and BA

Solution :

(i) AB :

AB =  \left[\begin{array}{ccc}1&2&3\\4&5&6\\0&0&0\end{array}\right]  \left[\begin{array}{ccc}7&10&0\\8&11&0\\9&12&0\end{array}\right]

: \implies AB =  \left[\begin{array}{ccc}7 + 16+27&10+22+36&0\\28+40+54&40+55+72&0\\0&0&0\end{array}\right]

: \implies AB =  \left[\begin{array}{ccc}50&68&0\\122&167&0\\0&0&0\end{array}\right]

__________________________

(ii) BA :

BA = \left[\begin{array}{ccc}7&10&0\\8&11&0\\9&12&0\end{array}\right]\left[\begin{array}{ccc}1&2&3\\4&5&6\\0&0&0\end{array}\right]

: \implies BA = \left[\begin{array}{ccc}7+40&14+50&21+60\\8+44&16+55&24+66\\9+48&18+60&27+72\end{array}\right]

: \implies BA = \left[\begin{array}{ccc}47&64&81\\52&71&90\\57&78&99\end{array}\right]

Hope it helps!

Similar questions