if a minus b a and a + b are the zeros of the polynomial f bracket x is equal to x cube minus 3 X square + X + 1 then the value of A and B respectively are
Answers
Answered by
59
- a + (a + b) + (a - b) = - Coefficient of x²/Coefficient of x³
- a(a+b)+(a+b)(a-b)+a(a-b) = Coefficient of x/Coefficient of x³
- a(a + b)(a - b) = - Constant Term/Coefficient of x³
________________________
⇒f(x) = x³ - 3x² + x + 1
Zeros are a, a - b and a + b i.e., in AP.
⇒a + (a + b) + (a - b) = - (- 3)/1
⇒3a = 3
⇒a(a+b)+(a+b)(a-b)+a(a-b) = 1
⇒a² + ab + a² - b² + a² - ab = 1
⇒3a² - b² = 1
⇒3(1)² - 1 = b²
kavita91:
vow
Answered by
56
Answer:
Given that;
(a - b), a and (a + b) are the zeroes of the polynomial f(x) = x³ - 3x² + x + 1.
Solution:
We know that-
Sum of zeroes = -b/a
⇒ (a - b) + a + (a + b) = -(-3)/1
⇒ 3a = 3
⇒ a = 3/3
⇒ a = 1
Product of zeroes = c/a
⇒ (a - b) * (a + b) * a = 1
⇒ a² - b² * a = 1 [(a + b)(a - b) = a² - b²]
⇒ 1² - b² * 1 = 1
⇒ 1 - b² = 1
⇒ b² = 1 + 1
⇒ b² = 2
⇒ b = ± √2
_______________________
★ Rules of polynomials-
- sum of zeroes = -b/a
- Product of zeroes = c/a
- Sum of products = -d/a
Similar questions