Math, asked by HanuSpiderman, 1 year ago

if a minus b is equal to 7 and a square + b square is equal to 85 then find the value of a cube minus b cube

Answers

Answered by adventureisland
95

a^3-b^3=721

Solution:

As given, a minus b is equal to 7

(a-b) =7 -------- (i)

Again, a square + b square is equal to 85

a^2+b^2=85 -------------- (ii)

Now if we square equation (i), we get,

(a-b)^2= 7^2

a^2-2ab+b^2=49

-2ab + 85 = 49

-2ab = -36

ab =18

Now,

a^3-b^3= (a-b)(a^2+ab +b^2)

= 7\times(85+18)=721

Answered by mysticd
25

Answer:

 Value\:of \: a^{3}-b^{3} = 721

Step-by-step explanation:

 Given \: a-b = 7 \: ---(1)\\and \\a^{2}+b^{2}=85\:---(2)

 We \: know \: the \: algebraic \: identity:\\</p><p>a^{2}+b^{2}-2ab = (a-b)^{2}

\implies  85 - 2ab = 7^{2}

/* From (1) and (2) */

\implies -2ab = 49 - 85

\implies -2ab = -36

\implies ab = \frac{-36}{-2}=18\:--(3)

Now,\\Value\:of \: a^{3}-b^{3}\\=(a-b)(a^{2}+ab+b^{2})\\=7(85+18)\\=7 \times 103\\=721

Therefore.,

 Value\:of \: a^{3}-b^{3} = 721

•••♪

Similar questions