Math, asked by Bitti7802, 1 month ago

If a^n+b^n/a^n-1+b^n-1 is the A.M. between a and b then find the value of n

Answers

Answered by Mathkeeper
3

Step-by-step explanation:

We have,

\tt{ \dfrac{ {a}^{n} +  {b}^{n}  }{ {a}^{n - 1}  +  {b}^{n - 1}  } \,\,is\,\,the\, \,AM \,\,between\,\,a\,\, and\,\, b}

So,

 \sf{ \dfrac{ {a}^{n} +  {b}^{n}  }{ {a}^{n - 1}  +  {b}^{n - 1}  } =  \dfrac{a + b}{2}  }

 \sf{ \implies 2{a}^{n} +  2{b}^{n} = ( {a}^{n - 1}  +  {b}^{n - 1} ) (a + b)}

 \sf{ \implies 2{a}^{n} +  2{b}^{n} = {a}^{n} + ab ^{n - 1}  + ba^{n - 1}  +  {b}^{n}  }

 \sf{ \implies {a}^{n} +  {b}^{n} =   ab ^{n - 1}  + ba^{n - 1}   }

 \sf{ \implies {a}^{n}  -  ba^{n - 1}  + {b}^{n}  -   ab ^{n - 1}  = 0    }

 \sf{ \implies {a}^{n - 1}(a  -  b)  -  {b}^{n - 1}(a  -   b )  = 0    }

 \sf{ \implies( {a}^{n - 1}-  {b}^{n - 1})(a  -   b )  = 0    }

 \rm{  \color{orange}Since \:  \: a \:  \: and \:  \: b \:  \: are \:  \: distinct \:  , so}

 \sf{ \implies{a}^{n - 1} -  {b}^{n - 1} = 0  }

 \sf{ \implies{a}^{n - 1}  =   {b}^{n - 1}   }

 \sf{ \implies{ \bigg( \dfrac{a}{b} \bigg) }^{n - 1}  =   1   }

 \sf{ \implies \: n  = 1  }

Similar questions