Math, asked by rekharani750844, 6 months ago

if a^n+b^n/a^n-2+b^n-2 is the A.M between a and b then find the value of n​

Answers

Answered by ParadoxPoison
0

Answer:

We know that arithmetic mean between a and b is A.M=  

2

a+b

​  

 

Given: A.M between a and b is  

a  

n−1

+b  

n−1

 

a  

n

+b  

n

 

​  

 

So,  

a  

n−1

+b  

n−1

 

a  

n

+b  

n

 

​  

=  

2

a+b

​  

 

⇒2(a  

n

+b  

n

)=(a+b)(a  

n−1

+b  

n−1

)

⇒2a  

n

+2b  

n

=a(a  

n−1

+b  

n−1

)+b(a  

n−1

+b  

n−1

)

⇒2a  

n

+2b  

n

=a  

n

+ab  

n−1

+ba  

n−1

+b  

n

 

⇒2a  

n

+2b  

n

−a  

n

−ab  

n−1

−ba  

n−1

−b  

n

=0

⇒a  

n

−ba  

n−1

+b  

n

−ab  

n−1

=0

⇒a  

n−1

(a−b)−b  

n−1

(a−b)=0

a  

n−1

−b  

n−1

=0 or a−b=0

a  

n−1

=b  

n−1

 or a=b but a

=b

∴  

b  

n−1

 

a  

n−1

 

​  

=1

⇒(  

b

a

​  

)  

n−1

=(  

b

a

​  

)  

0

 since a  

0

=1

Since bases are same, we can equate the powers,

∴n−1=0

Hence n=1

Step-by-step explanation:

Similar questions