Math, asked by user893, 1 month ago

if a non zero vector c is perpendicular to the given non zero vectors a and b, then find the angle between vector c and vector a x b. ​

Answers

Answered by mathdude500
3

\green{\large\underline{\bf{Solution-}}}

By definition of Cross Product of two vectors,

\rm :\longmapsto\:\vec{a} \times \vec{b} \: gives \: a \: vector \: perpendicular \: to \: both \: \vec{a} \: and \: \vec{b}.

\rm :\longmapsto\:If \: \vec{a} \times \vec{b} = \vec{c}

 \blue{\bf :\implies\:\vec{a} \:  \perp \: \vec{c} \:  \:  \: and \:  \:  \:  \: \vec{b} \:  \perp \: \vec{c}}

And

Conversely,

 \blue{\rm :\longmapsto\:\bf If\:\vec{a} \:  \perp \: \vec{c} \:  \:  \: and \:  \:  \:  \: \vec{b} \:  \perp \: \vec{c}}

\bf\implies \:\vec{c} \:  \parallel \: \vec{a} \times \vec{b}

\bf\implies \:\vec{c} =  \lambda \: (\vec{a} \times \vec{b})

Let's solve the problem now!!!

Given that

 \blue{\bf :\mapsto\:\vec{a} \:  \perp \: \vec{c} \:  \:  \: and \:  \:  \:  \: \vec{b} \:  \perp \: \vec{c}}

\bf\implies \:\vec{c} \:  \parallel \: \vec{a} \times \vec{b}

\bf\implies \:angle \: between \: \vec{c} \: and \: \vec{a} \times \vec{b} \: is \: 0 \degree

Additional Information :-

\boxed{ \sf \:\vec{a}.\vec{b} = \vec{b}.\vec{a}}

\boxed{ \sf \:\vec{a} \times \vec{b} = -  \vec{b} \times \vec{a}}

\boxed{ \sf \:\vec{a} \: . \: \vec{a} =  { |\vec{a}| }^{2}}

\boxed{ \sf \:\vec{a} \times \vec{a} = 0}

\boxed{ \sf \:\vec{a}.\vec{b} = 0 \implies \: \vec{a} \:  \perp \: \vec{b}}

\boxed{ \sf \:\vec{a} \times \vec{b} = 0 \implies \: \vec{a} \:  \parallel \: \vec{b}}

Similar questions