Math, asked by Anonymous, 1 month ago

If a number is 42 more than the average of its half, one-third and one-
fifteenth, then the number is​

Answers

Answered by Anonymous
9

Given:

  • If a number is 42 more than the average of its half, one-third and one- fifteenth, then the the number is.

Answer:

  • 60

Solution:

Let the number be x

Then,

  • { \boldsymbol { Half \: of \: x \:  =  \:  \dfrac{1}{2} x}}
  • { \boldsymbol { one -third \: of \: x \:  =  \:  \dfrac{1}{3} x}}
  • { \boldsymbol { one - fifteenth \: of \: x \:  =  \:  \dfrac{1}{15} x}}

Now,

  • Average of half

  • One-third of x

  • One-fifteenth of x

 \\  \bf \:  =  \:  \:  \:  \:  \:  \frac{ \bigg( \dfrac{1}{2} x  \: + \:  \dfrac{1}{3}x \:  +  \:  \dfrac{1}{15}   x \bigg) }{3}  \\  \\  \bf \:  = \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \frac{1}{ 3}  \bigg( \frac{x}{2    }  +  \frac{x}{3}  +  \frac{x}{15} \bigg ) \\

{ \boldsymbol{ \ \: As \:  per \:  question, }}  \\ \\ \:  \:  \:  \:  \:  \bf \: x \:  =  \:  \frac{x}{6}  +  \frac {x}{9} +  \frac{x}{45}   + 42 \\  \\

Transposing variables on one side and constant terms on other side, we get:

 \\ \bf \: x \:   -   \:  \dfrac{x}{6}   -   \dfrac {x}{9}  -   \dfrac{x}{45}   =  42 \\

Multiplying both sides by 90 (L.C.M of 6, 9 and 15), we get:

 \\  \bf \: 90x \:  - 15x - 10x - 2x = 40 \times 90 \\  \\   \implies \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \bf \:  \:  \:  \:  \:   \:    \: 63x = 40 \times 90 \\  \\   \implies \:  \:  \:  \:   \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \bf \:  \:  \:  \:  \:   \:    \: x =  \frac{40 \times 90}{63} \\  \\   \implies \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \bf \:  \:  \:  \:  \:   \:   \:  \:  \:  \:  \:  \:  \:   \: x = { \underline{ \boxed{ \bigstar{ \pink{ \boldsymbol{60}}}}}}

  • Hence, The number is 60

Similar questions