Math, asked by agnishmitra705, 3 months ago

If a number is chosen at random from the numbers 1 to 20 inclusive, what is the probability

that:

a) a prime number will be picked? b) an even number will be picked?

c) a single digit number will be picked​

Answers

Answered by MaheswariS
2

\underline{\textbf{Given:}}

\textsf{A number is chosen at random from the numbers 1 to 20}

\underline{\textbf{To find:}}

\textsf{What is the probability that,}

\textsf{(a) a prime number will be picked}

\textsf{(b) an even number will be picked}

\textsf{(c) a single digit number will be picked}

\underline{\textbf{Solution:}}

\mathsf{Here,}

\mathsf{Sample\;space=\{1,2,3,4\;.\;.\;.20\}}

\implies\mathsf{n(S)=20}

\textsf{Let A be the event of getting a prime number}

\mathsf{Then,\;A=\{2,3,5,7,11,13,17,19\}}

\implies\mathsf{n(A)=8}

\mathsf{P(A)=\dfrac{n(A)}{n(S)}}

\mathsf{P(A)=\dfrac{8}{20}}

\implies\boxed{\mathsf{P(A)=\dfrac{2}{5}}}

\textsf{Let B be the event of getting an even number}

\mathsf{Then,\;B=\{2,4,6,8,10,12,14,16,18,20\}}

\implies\mathsf{n(B)=8}

\mathsf{P(B)=\dfrac{n(B)}{n(S)}}

\mathsf{P(B)=\dfrac{8}{20}}

\implies\boxed{\mathsf{P(B)=\dfrac{2}{5}}}

\textsf{Let C be the event of getting a single digit number}

\mathsf{Then,\;C=\{1,2,3,4,5,6,7,8,9\}}

\implies\mathsf{n(C)=9}

\mathsf{P(C)=\dfrac{n(C)}{n(S)}}

\mathsf{P(C)=\dfrac{9}{20}}

\implies\boxed{\mathsf{P(C)=\dfrac{9}{20}}}

\underline{\textbf{Find more:}}

Let A and B be two events such that P(A)=0.6, P(B) = 0.2 and P(A/B)=0.5. Then P (A'/B')

equals

(a) 1/10

(b) 3/10

(C) 3/8

(d) 6/7​  

https://brainly.in/question/14116335

Similar questions