Math, asked by simishaikh7867, 3 months ago

If a + p = 2, prove that a² + 6ap +p3 - 8 = 0

Answers

Answered by mathdude500
4

\large\underline{\sf{Given- }}

\rm :\longmapsto\:a + p = 2

\large\underline{\sf{To\:prove - }}

\rm :\longmapsto\: {a}^{3} + 6ap +  {p}^{3} - 8 = 0

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\:a + p = 2

\rm :\longmapsto\:a + p  - 2 = 0

We know,

\rm :\longmapsto\:If \: a + b + c = 0 \: then \:  {a}^{3} +  {b}^{3} +  {c}^{3} = 3abc

Using this identity,

\rm :\longmapsto\: {a}^{3} +  {p}^{3} +  {( - 2)}^{3} = 3(a)(p)( - 2)

\rm :\longmapsto\: {a}^{3} +  {p}^{3}  - 8=  - 6ap

\rm :\longmapsto\: {a}^{3} +  {p}^{3}  - 8 +  6ap = 0

\rm :\longmapsto\: {a}^{3} +  {p}^{3} +  6ap - 8 = 0

Hence, proved

More Identities to know:

  • (a + b)² = a² + 2ab + b²

  • (a - b)² = a² - 2ab + b²

  • a² - b² = (a + b)(a - b)

  • (a + b)² = (a - b)² + 4ab

  • (a - b)² = (a + b)² - 4ab

  • (a + b)² + (a - b)² = 2(a² + b²)

  • (a + b)³ = a³ + b³ + 3ab(a + b)

  • (a - b)³ = a³ - b³ - 3ab(a - b)

Similar questions