Math, asked by navinprakashnavinpra, 1 year ago

If a^p = b^q = c^r and b square = ac,then show that q=2rp by r+p

Answers

Answered by Anonymous
3

Answer \:  \\  \\ a {}^{p}  = b {}^{q}  = c {}^{r}  \:  = k \:  \:  \:  \:  \:  \: let \\  \\ a {}^{p}  = k \:  \:  \:  \:  \:  \:  \:  \:  \: b {}^{q}  = k \:  \:  \:  \:  \:  \:  \:  \: c {}^{r}  = k \:  \:  \:  \:  \:  \:  \\  \\ a = k {}^{ \frac{1}{p} }  \:  \:  \:  \: ...Equation \:  \:  \:  \: i \\  \\ b = k {}^{ \frac{1}{q} }  \:  \: ... \: Equation \:  \:  \: ii \\  \\ c = k {}^{ \frac{1}{r} }  \:  \:  \: ... \: Equation \:  \:  \: iii \\  \\  \\ b {}^{2}  = ac \:  \:  \:  \:  \: put \: the \: value \: of \:  \: a \:  \:  \: b \:  \:  \: and \:  \:  \:  \: c \:  \\ in \: this \: given \:  \: equation \: we \: have \\  \\ k {}^{ (\frac{2}{q})   }  = k {}^{ \frac{1}{p} }  \:  \:  \times  \:  \: k {}^{ \frac{1}{r} }  \\  \\ k {}^{( \frac{2}{q} )  }  = k {}^{ (\frac{1}{p} +  \frac{1}{r})  }  \\  \\ Now \:  \: compare \: powers \: of \: k \: we \: have \\  \\  \\  \frac{2}{q}  =  \frac{1}{p}  +  \frac{1}{r}  \\  \\  \frac{2}{q}  =  \frac{(r + p)}{rp}  \\  \\ 2rp = q(r + p) \\  \\ q =  \frac{2rp}{(r + p)}  \\  \\ therefore \:  \:  \: q \:  =  \frac{2rp}{(r + p)}

Similar questions