If a = p Sec B Cos C, b = q Sec B Sin C and c = r Tan B, then
(a2/p2) + (b2/q2) is
c²/12
1- (c2/r2)
(c2/r2) - 1
1 + (c2/r2)
pls answer fast
Answers
Answered by
1
Answer:
Step-by-step explanation:
Given : (p² − q² )x² − (q² − r² )x + (r² − p² ) = 0
To find : root of the equation
Solution:
(p² − q² )x² − (q² − r² )x + (r² − p² ) = 0
if x = 1
=> (p² − q²) - (q² − r² ) + (r² − p² ) = 2(r² - q²) q ≠ r hence not equal to zero
if x = - 1
=> (p² − q²) + (q² − r² ) + (r² − p² ) = 0
Hence one root is - 1
products of roots = (r² − p² ) / (p² − q² )
Hence another root = - (r² − p² ) / (p² − q² )
= (p² − r² ) / (p² − q² )
Hence option d is correct
- 1 , (p² − r² ) / (p² − q² ) are the roots
Read more on Brainly.in - https://brainly.in/question/18904718#readmore
Similar questions