If a= p sec + q tan n b= p tan +q sec find a2 - b2
Answers
Answer:
Step-by-step explanation:
a=p sec + q tan
=p/cos + q sin/cos
=(p+qsin)/cos
b= p tan + q sec
=( psin + q)/cos
a^2-b^2=
( (p+qsin)^2 - (p sin +q) ) / Cos^2
=( p^2 + q^2sin^2 + 2 pqsin -p^2sin^2 -q^2 - 2pqsin ) / cos^2
=( p^2 - p^2sin^2 - q^2 + q^2sin^2 ) / cos^2
Take p^2 and q^2 common respectively
=( p^2(1-sin^2) - q^2 (1 - sin^2) ) / cos^2
Since,1-sin^2 = cos ^2
Therefore take common in numerator
= ( cos ^2 (p^2 - q^2) ) / cos ^2
= p^2 - q^2
Hope This will Help☺
Answer:
p²-q²
Step-by-step explanation:
a = p sec + q tan
a = p/cos + q sin/cos
b = p tan + q sec
b = p sin/cos + q /cos
a² - b² = (a+b) (a-b)
= (p/cos + q sin/cos + p sin/cos + q /cos)(p/cos + q sin/cos - p sin/cos - q /cos)
= (1/cos) (p + qsin + psin + q) (1/cos)(p + qsin - psin - q)
= (1/cos)²(p(1+sin) + q (1+sin))((p(1-sin) - q(1-sin))
= (1/cos)²(p+q)(1+sin)(p-q)(1-Sin)
= (1/cos)²(p²-q²)(1 - sin²)
= (1/cos)²(p²-q²)(cos²)
= p²-q²