Math, asked by narsimharj1970, 8 months ago

If A=pi/4then (1+tan A) (1+tan ^2 A) (1+tan^3 A) =
1) 6 2) 4 3) 8 4)2​

Answers

Answered by pulakmath007
1

SOLUTION

TO CHOOSE THE CORRECT OPTION

If  \displaystyle \sf{A =  \frac{\pi}{4} }

Then

 \displaystyle \sf{(1 +   { \tan}^{} A )(1 +   { \tan}^{2} A )(1 +   { \tan}^{3} A )}

1) 6

2) 4

3) 8

4) 2

EVALUATION

Here it is given that

Now the given expression

 \displaystyle \sf{ = (1 +   { \tan}^{} A )(1 +   { \tan}^{2} A )(1 +   { \tan}^{3} A ) }

 \displaystyle \sf{ = (1 +   { \tan}^{} \frac{\pi}{4}  )(1 +   { \tan}^{2} \frac{\pi}{4}  )(1 +   { \tan}^{3} \frac{\pi}{4}  )}

 \displaystyle \sf{ = (1 +   1 )(1 +   1  )(1 + 1)}

 = 2 \times 2 \times 2

 = 8

FINAL ANSWER

Hence the correct option is 3) 8

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. If cosθ+secθ=√2,find the value of cos²θ+sec²θ

https://brainly.in/question/25478419

2. Value of 3 + cot 80 cot 20/cot80+cot20 is equal to

https://brainly.in/question/17024513

3. In a triangle, prove that (b+c-a)(cotB/2+cotC/2)=2a×cotA/2

https://brainly.in/question/19793971

Answered by lohitjinaga
1

Step-by-step explanation:

SOLUTION

TO CHOOSE THE CORRECT OPTION

If

\displaystyle \sf{A = \frac{\pi}{4} }A=

4

π

Then

\displaystyle \sf{(1 + { \tan}^{} A )(1 + { \tan}^{2} A )(1 + { \tan}^{3} A )}(1+tan

A)(1+tan

2

A)(1+tan

3

A)

EVALUATION

Here it is given that

Now the given expression

\displaystyle \sf{ = (1 + { \tan}^{} A )(1 + { \tan}^{2} A )(1 + { \tan}^{3} A ) }=(1+tan

A)(1+tan

2

A)(1+tan

3

A)

\displaystyle \sf{ = (1 + { \tan}^{} \frac{\pi}{4} )(1 + { \tan}^{2} \frac{\pi}{4} )(1 + { \tan}^{3} \frac{\pi}{4} )}=(1+tan

4

π

)(1+tan

2

4

π

)(1+tan

3

4

π

)

\displaystyle \sf{ = (1 + 1 )(1 + 1 )(1 + 1)}=(1+1)(1+1)(1+1)

= 2 \times 2 \times 2=2×2×2

= 8=8

Similar questions