Math, asked by kapoornaman306, 16 days ago

If a piece of wire 30 cm long is bent into the form of an arc of a circle, subtending an angle of 60° at its centre, then radius of the circle is :

Answers

Answered by XxLUCYxX
16

 \orange{Let\:the\:name\:of\:the\:wire\:be\:AB}

\huge\mathcal \fcolorbox{red}{green}{Given}

Length\:of\:the\:wire\:=\:30cm

It\:is\:bent\:in\:an\:arc\:which\:subtends\:an\:angle =  \theta =  {60}^{ \degree}  \: at \: the \: centre \: of \: the \:circle\:

which \: the \: arc \: AB\:belongs\:to.

\huge\mathcal{\fcolorbox{aqua}{azure}{\red{To\:find}}}

The\:radius\:of\:the\:circle

\boxed{\boxed{{\orange{\bold{{Solution}}}}}}

The \: lenght \: of \: the \: arc \: is \: 30 \: cm

It \: forms \: a \: part \: of \: the \: circle \: with \: radius \:  =  \: r

Also\:it\:subtends\:an\:angle  \:  \theta \:  =  \:  {60}^{ \degree}

Now\:,\:for\: \theta\:=\: {60}^{ \degree}  \: the \: arc \: lenght \: is \: 30 \: cm

\therefore\: \theta\:=\: {360}^{ \degree}  \: the \: arc \: lenght \: is \: C \:  =  \:  \frac{1}{ \theta }  \times  {360}^{ \degree} cm \: =\: circumference\:=\:C\:of\:the\:circle

So\:C\:=\: \frac{20}{ 60 \:  \degree}  \times  {360}^{ \degree} cm \:  =  \: 180cm

But\:C\:=\:2\pi \: r

\therefore\:2\:\pi \: r \:  =  \: 180 \: cm

r \:  =  \:  \frac{90}{\pi}

Similar questions