Math, asked by zarin1458, 2 days ago

if a plus b equal to 7 , ab equal to 6 find a cube minus b cube

Answers

Answered by DeeznutzUwU
0

       \underline{\bold{Answer:}}

       +215,-215

       \underline{\bold{Step-by-step-explaination:}}

       \text{It is given that: }

       a+b = 7 \text{ ------(i) }

       ab = 6\text{ ------(ii)}

       \text{We have to find }a^{3} - b^{3}

       \text{We know that, }(x+y)^{2} = x^{2} + y^{2} + 2xy

\implies (a+b)^{2} = a^{2} + b^{2} + 2ab

       \text{From (i) and (ii)}

\implies (7)^{2} = a^{2} + b^{2} + 2(6)

       \text{Simplifying...}

\implies 49 = a^{2} + b^{2} + 12

       \text{Transposing 12 to R.H.S}

\implies 49 - 12 = a^{2} + b^{2}

        \text{Simplifying...}

\implies 37 = a^{2} + b^{2}\text{ ------(iii)}

       \text{We know that, }(x-y)^{2} = x^{2} + y^{2} - 2xy

\implies (a-b)^{2} = a^{2} + b^{2} - 2ab

       \text{From (ii) and (iii)}

\implies (a-b)^{2} = 37 - 2(6)

       \text{Simplifying...}

\implies (a-b)^{2} = 25

       \text{Rooting both sides}

\implies a-b = \sqrt{25}

       \text{Simplifying...}

\implies a-b = +5, -5 \text{ ------(iv)}

       \text{We know that }x^{3} - y^{3} = (x-y)(x^{2}  +y^{2}+xy)

\implies a^{3} - b^{3} = (a-b)(a^{2}  +b^{2}+ab)

       \text{From (ii), (iii) and (iv)}

\implies a^{3} - b^{3} = (+5,-5)(37+6)

       \text{Simplifying...}

\implies a^{3} - b^{3} = (+5,-5)(43)

       \text{Simplifying...}

\implies \boxed{a^{3} - b^{3} = +215,-215}

     

Similar questions