Math, asked by Adinarayana2865, 1 year ago

If a point A(0,2) os equidistant from the points B(3,p) and C(p,5), then find the value of 'p'.

Answers

Answered by dalluchemistry
2

Since A is equidistant frm B & C, we can say AC = BC


Answered by LaCheems
23

 {\huge{ \boxed{\color{teal}{\textsf{\textbf{Answer:}}}}}}

To Solve:

If point A (0,2) is equidistant from the point B (3, p)and C (p, 5), find p

Solⁿ:

Mid Point - A•(0,2)

Equidistant 1 - B•(3,p)

Equidistant 2 - C•(p,5)

AB = BC (distance)

Distance Formula :

\sqrt{ { ({x}^{2}  -  {x}^{1} )}^{2} +  { ({y}^{2}  -  {y}^{1} )}^{2}}

A• x = 0 , y = 2

B• x = 3 , y = p

C• x = p , y = 5

{ \tt{ \sqrt { {(3 - 0)}^{2}+{(p - 2)}^{2} }  =  \sqrt{ {(p - 0)}^{2}  +  {(5 - 2)}^{2} }}}  \\  \\  { \tt{\sqrt{9 +  {p}^{2} + 4  - 4p }  =   \sqrt{ {p}^{2} + 9 }}} \\  \\ { \tt{ \red{squaring \:  \: both \:  \: the \:  \: sides}}} \\  \\  { \tt{9 +  {\cancel{{p}^{2}}}  + 4  -  4p  \:  \: =   \:  \: {\cancel{{p}^{2}}}  + 9}} \\  \\ { \tt{13 - 9  = 4p}} \\  \\ { \tt{4 = 4p}} \\  \\  { \tt{\frac{4}{4}  = p}} \\ \\ { \boxed{ \tt{ \blue{1 = p}}}}

ㅤㅤ

HOPE IT HELPS

MARK BRAINLIEST PLS :)

Similar questions