Math, asked by pahashank, 1 year ago

if a point P is moving such that the lengths of tangents drawn from P to the circles X square + Y square - 4 x -6 Y - 12 = 0 and X square + Y square + 6 X + 18 Y + 26 =0 are in the ratio 2:3,then find the equation to the locus of P​

Answers

Answered by MaheswariS
5

\textbf{Given:}

\text{Equation of circles are}

x^2+y^2-4x-6y-12=0

x^2+y^2+6x+18y+26=0

\textbf{To find:}

\text{The locus of P}

\textbf{Solution:}

\textbf{We know that,}

\textbf{Length of the tangent from the point}\bf\,P(x_1,y_1) \textbf{to the circle}\\\bf\,x^2+y^2+2gx+2fy+c=0\;is

\bf\,PT=\sqrt{{x_1}^2+{y_1}^2+2gx_1+2fy_1+c}

\text{Let the coordinates of P be (h,k)}

\textbf{Given geometrical condition:}

\dfrac{PT_1}{PT_2}=\dfrac{2}{3}

\dfrac{\sqrt{h^2+k^2-4h-6k-12}}{\sqrt{h^2+k^2+6h+18k+26}}=\dfrac{2}{3}

\text{Squaring on bothsides, we get}

\dfrac{h^2+k^2-4h-6k-12}{h^2+k^2+6h+18k+26}=\dfrac{4}{9}

9(h^2+k^2-4h-6k-12)=4(h^2+k^2+6h+18k+26)

9h^2+9k^2-36h-54k-108=4h^2+4k^2+24h+72k+104

\text{Rearranging terms, we get}

\implies\,5h^2+5k^2-60h-126k-212=0

\therefore\textbf{The locus of P is}

\boxed{\bf\,5x^2+5y^2-60x-126y-212=0}

Find more:

B and c are fixed points having coordinates (3,0) and (-3,0) respectively. If the vertical angle bac is 90 then locus

https://brainly.in/question/13799728

If A =(-2,3) and B=(4,1) are given points find the equation of locus of point P, such that PA=2PB.

https://brainly.in/question/3201572

Find the locus of the point p such that PA2+pb2=2c2 where A(a,0),B(-a,o) and 0<|a|<|c|​

https://brainly.in/question/19831924

Answered by prasannachodavarpu
0

Answer:

5x^2 +5y^2-60x-126y-212=0

Similar questions