If a point P moves such that the distance from the point A(1,1) and the line x+y+2=0 are equal then the locus of P is equal to
Answers
Let the point P be (h, k), Now it is given that the point P is always equidistant from the point A(1, 1) and the line x + y + 2 = 0
This can be expressed as,
⇒ AP = Distance of A from line x + y + 2 = 0
The distance between the points A and P can be found using the distance formula, so let's try to find the distance of the point P from the line.
We know, The distance of a point (x₁ , y₁) from a line ax + by + c = 0 is given by,
⇒ D = | { ax₁ + by₁ + c } / { √(a² + b²) } |
Substituting the values in the given formula, we get
⇒ D = | { 1×h + 1×k + 2 } / { √(1 + 1) } |
⇒ D = | (h + k + 2) / √2 |
Square both sides to remove the modulus, because after squaring the value will always be positive, so no need of modulus
⇒ D² = (h + k + 2)² / 2 ...(i)
Now,
⇒ AP² = D²
⇒ (1 - h)² + (1 - k)² = (h + k + 2)² / 2
⇒ 2(1 + h² - 2h + 1 + k² - 2k) = h² + k² + 4 + 2hk + 4k + 4h
⇒ 2 + 2h² - 4h + 2 + 2k² - 4k = h² + k² + 4 + 2hk + 4k + 4h
⇒ 2h² - h² + 2k² - k² - 4h - 4h - 4k - 4k - 2hk = 4 - 2 - 2
⇒ h² + k² - 8h - 8k - 2hk = 0
Replacing h with x and k with y, we get
⇒ x² + y² - 8x - 8y - 2xy = 0
Let the point P be (h, k)
⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━
⠀
→ D = | { ax₁ + by₁ + c } / { √(a² + b²) } |
→ D = | { 1 × h + 1 × k + 2 } / { √(1 + 1) } |
→ D = | (h + k + 2)/√2 |
→ D² = (h + k + 2)²/2 ...(i)
Now,
→ AP² = D²
→ (1 - h)² + (1 - k)² = (h + k + 2)²/2
→ 2(1 + h² - 2h + 1 + k² - 2k) = h² + k² + 4 + 2hk + 4k + 4h
→ 2 + 2h² - 4h + 2 + 2k² - 4k = h² + k² + 4 + 2hk + 4k + 4h
→ 2h² - h² + 2k² - k² - 4h - 4h - 4k - 4k - 2hk = 4 - 2 - 2
→ h² + k² - 8h - 8k - 2hk = 0
→ x² + y² - 8x - 8y - 2xy = 0