Math, asked by Amandeepkumar6200112, 1 year ago

If a point P(x, y) is equidistant from the points A (6,-1) and B(2,3)find the relation between X and Y.

Answers

Answered by SillySam
12
Distance between two points
 =  \sqrt{(x2 -x1) {}^{2}  + (y 2 - y1) {}^{2}  }


AP=
 \sqrt{(x - 6) {}^{2}  + (y - ( - 1) {}^{2} }


 =  \sqrt{(x  {}^{2}  + 36 - 12x) + (y + 1) {}^{2} }


 =  \sqrt{ {x}^{2}  + 36 - 12x +  {y}^{2} + 1  + 2y}


 =  \sqrt{ {x}^{2}  +  {y}^{2}  - 12x + 2y + 37 }

AP^2
 = ( \sqrt{ {x}^{2} + y {}^{2}  - 12x + 2y + 37 }  ){}^{2}


 =  {x}^{2}  +  {y}^{2}  - 12x + 2y + 37


BP
 =  \sqrt{(x - 2) {}^{2} +  (y - 3) {}^{2} }


 =  \sqrt{ {x}^{2}  + 4 - 4x +  {y}^{2}  + 9 - 6y}


 =  \sqrt{ {x}^{2}  +  {y}^{2} - 4x - 6y + 13 }


BP^2
 =  (\sqrt{x {}^{2}  + y {}^{2}  - 4x - 6y + 13} ) {}^{2}


 =  {x}^{2}  +  {y}^{2}  - 4x - 6y + 13


AP^2 = BP^2

x^2 + y^2 -12 x +2 y +37 = x^2 + y^2 -4x -6y +13

-12x+2y +37 = -4x -6y +13

2y +6y = -4x +12 x +13-37

8y = 8x - 24

dividing the equation by 8 .

y=x - 3

3 = x-y

This is the required relationship.
Similar questions