Math, asked by harinibabu29, 1 year ago

if a point (x,y)=(tana+sina,tana-sina) then the locus of (x,y) is

Answers

Answered by MaheswariS
3

\textbf{Given:}

\text{The moving point (x,y) with}

x=tanA+sinA\;\text{and}\;y=tanA-sinA

\textbf{To find: Locus of (x,y)}

x=tanA+sinA

y=tanA-sinA

\text{Then,}\;\;x^2-y^2

=(tanA+sinA)^2-(tanA-sinA)^2

=tan^2A+sin^2A+2\,tanA\,sinA-tan^2A-sin^2A+2\,tanA\,sinA

=4\,tanA\,sinA..........(1)

xy=(tanA+sinA)(tanA-sinA)

xy=tan^2A-sin^2A

xy=\dfrac{sin^2A}{cos^2A}-sin^2A

xy=sin^2A(\dfrac{1}{cos^2A}-1)

xy=sin^2A(sec^2A-1)

xy=sin^2A\;tan^2A.......(2)

(1)\implies\,(x^2-y^2)^2=16\,sin^2A\,tan^2A

\implies\bf\,(x^2-y^2)^2=16xy

\therefore\textbf{The locus of (x,y) is}

\bf\,(x^2-y^2)^2=16xy

Find more:

If A =(-2,3) and B=(4,1) are given points find the equation of locus of point P, such that PA=2PB.

https://brainly.in/question/3201572

B and c are fixed points having coordinates (3,0) and (-3,0) respectively. If the vertical angle bac is 90 then locus

https://brainly.in/question/13799728

Similar questions