Math, asked by Jagadaku, 4 months ago

If a polynomial p(x) has zeroes as 2 and 3, Write a polynomial whose zeros
are reciprocal of zeroes of p(x). ( With Explaintion please)

Answers

Answered by mathdude500
10

\large\underline{\sf{Given- }}

  \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \bull \: \dfrac{1}{2} \: and \:  \dfrac{1}{3}  \: are \: zeroes \: of \: polynomial

\large\underline{\sf{To\:Find - }}

 \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \bull \: the \: polynomial \: having \: zeroes \: \dfrac{1}{2}  \: and \: \dfrac{1}{3}

\large\underline{\sf{Solution-}}

 \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \bull \: Let \: f(x) \: be \: the \: required \: polynomial.

 \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \bull \: Let \:  \alpha  = \dfrac{1}{2}  \:  \: and \:  \:  \beta  = \dfrac{1}{3}

Now,

  • Sum of zeroes is given by

\rm :\longmapsto\: \alpha +   \beta  = \dfrac{1}{2}  + \dfrac{1}{3}  = \dfrac{3 + 2}{6}  = \dfrac{5}{6}

and

  • Product of zeroes is given by

\rm :\longmapsto\: \alpha  \beta  = \dfrac{1}{2}  \times \dfrac{1}{3}  = \dfrac{1}{6}

Hence,

  • The required polynomial f(x) is given by

\rm :\longmapsto\:f(x) = k( {x}^{2}  - ( \alpha +   \beta)x +   \alpha  \beta) \: where \: k \ne \: 0

\rm :\longmapsto\:f(x) = k\bigg(  {x}^{2} - \dfrac{5}{6} x + \dfrac{1}{6}  \bigg)  \: where \: k \ne \: 0

\rm :\longmapsto\:f(x) = \dfrac{k}{6} ( {6x}^{2}  - 5x + 1) \: where \: k \ne \: 0

Additional Information :-

 \sf \: Let \: f(x) =  {ax}^{2}  + bx + c \: be \: a \: quadratic \: polynomial \: then

\boxed{\red{\sf Sum\ of\ the\ zeroes=\frac{-coefficient\ of\ x}{coefficient\ of\ x^{2}}}}

OR

\boxed{\purple{\tt Sum\ of\ the\ zeroes=\frac{-b}{a}}}

And

\boxed{\red{\sf Product\ of\ the\ zeroes=\frac{Constant}{coefficient\ of\ x^{2}}}}

OR

\boxed{\purple{\tt Product\ of\ the\ zeroes=\frac{c}{a}}}

Answered by BrainlyBAKA
1

HOPE IT HELPS

PLEASE MARK ME BRAINLIEST ☺️

Attachments:
Similar questions