Math, asked by Anonymous, 10 months ago

If a polynomial p(x)=x³-3x²+5x-3 is divided by polynomial g(x)=x²-2,the quotient and remainder are:​

Answers

Answered by Anonymous
29

\rule{200}3

Question :-

If a polynomial p(x)=x³-3x²+5x-3 is divided by polynomial g(x)=x²-2,the quotient and remainder are:

\rule{200}3

Given :-

  • p(x)=x³ - 3x² + 5x - 3

  • g(x)=x² - 2

\rule{200}3

To find :-

  • Quotient and remainder

\rule{200}3

Solution :-

\boxed{\begin{array}{l | n | r}\sf x^2-2&\sf x^3-3x^2+5x-3&\sf x-3\\ &\sf x^3\:\:\:\: \:\:\:\:\: \:\:\:-2x\\ & ( - )\:\:\:\:\:\:\:\: \:\:\:\:( + )\\&\rule{80}{0.8}\\&\sf\qquad -3x^2+7x-3\\ &\sf\qquad-3x^2\:\:\:\:\:\: \:\:\:\:+6\\ &\qquad( + )\:\:\:\:\:\:\:\: \:\:\:\:( - )\\&\quad\rule{80}{0.8}\\&\qquad\qquad\sf 7x-9\end{array}}

  • Quotient = x - 3

  • Remainder = 7x - 9

\rule{200}3

Answered by ExᴏᴛɪᴄExᴘʟᴏʀᴇƦ
17

\huge\sf\pink{Answer}

☞ Quotient = x-3

☞ Remainder = 7x-9

\rule{110}1

\huge\sf\blue{Given}

✭ p(x) = x³-3x²+5x-3 is divided by g(x) = x²-2

\rule{110}1

\huge\sf\gray{To \:Find}

◈ The Quotient And the Remainder?

\rule{110}1

\huge\sf\purple{Steps}

So here is your Division,

 \sf  \green{{x}^{2} - 2 }){{x}^{3}  - 3 {x}^{2}  + 5x - 3}{(}\red{x - 3} \\  \sf \qquad \: \:  \:  \:  \:    {x}^{3}  \qquad \: \:  \:  \:  \:   - 2x \\  \sf \qquad \:  \:  \:  \ ( - ) \qquad \:  \:    (  + )  \\ \underline{  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  } \\  \sf \qquad \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  - 3 {x}^{2}  + 7x - 3 \\  \sf \qquad  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:- 3 {x}^{2}  \qquad \:  \:  + 6 \\  \sf \qquad \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   ( + ) \qquad \:  \:  ( - ) \\  \underline{ \qquad \qquad \qquad \qquad \qquad \qquad \:  } \\  \sf \qquad \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \orange{7x - 9}\\ \underline{ \qquad\qquad\qquad\qquad\qquad\qquad \:}

\rule{170}3

Similar questions