Math, asked by rejoicesiro20, 4 months ago

if a power b=b power a, show that (a/b)power a/b=a power a/b-1​

Answers

Answered by anindyaadhikari13
5

Required Answer:-

Given Information:

 \sf \mapsto {a}^{b}  =  {b}^{a}

To prove:

 \sf \mapsto { \bigg(  \dfrac{a}{b} \bigg)}^{ \frac{a}{b} }  =  {a}^{  {}^{b}/_{a} - 1 }

Proof:

Taking LHS,

 \sf { \bigg(\dfrac{a}{b} \bigg)}^{^{a}/_{b}  }

 \sf =  \dfrac{ {a}^{{}^{a}/ _{b}}}{ {b}^{^{a}/_{b}} }

 \sf =  \dfrac{ {a}^{{}^{a}/ _{b}}}{ ({b}^{a})^{^{1}/_{b} } }

We know that,

 \sf \mapsto {a}^{b}  =  {b}^{a}

So,

 \sf \dfrac{ {a}^{{}^{a}/ _{b}}}{ ({b}^{a})^{^{1}/_{b} } }

 \sf =  \dfrac{ {a}^{{}^{a}/ _{b}}}{ ( {a}^{b} )^{^{1}/_{b} } }

 \sf =  \dfrac{ {a}^{{}^{a}/ _{b}}}{ ( {a}^{b \times  \frac{1}{b}} )}

 \sf =  \dfrac{ {a}^{^{a}/_{b} } }{ {a}^{1} }

 \sf =  {a}^{^{a}/_{b} - 1 }

Taking RHS,

 \sf =  {a}^{^{a}/_{b} - 1 }

Thus, LHS = RHS (Hence Proved)

Formulae for solving Indices Questions:

\sf \mapsto({x}^{a} )^{b} = {x}^{ab}

\sf \mapsto \dfrac{ {x}^{a} }{ {x}^{b} } = {x}^{a - b} ,x \neq0

\sf \mapsto {x}^{a} \times {y}^{a} = {(xy)}^{a}

\sf \mapsto \bigg(\dfrac{x}{y} \bigg)^{a} = \dfrac{ {x}^{a} }{ {y}^{a} } ,y \neq0

\sf \mapsto {x}^{a} = {x}^{b} \implies a = b,x \neq0

\sf \mapsto {x}^{a} = {y}^{a} \implies x = y,a \neq 0

\sf \mapsto {x}^{a} = \dfrac{1}{ {x}^{ - a} }

\sf \mapsto \sqrt[y]{x} = {x}^{ \frac{1}{y}}

Answered by Anisha5119
4

Answer:

Heya mate here's the answer Mark as brainliest pleaseeeeee follow up

Attachments:
Similar questions