Math, asked by ssweetyssindhu, 5 months ago

If a ray makes angles a, b, y, 8 with the four diagonals of a cube find
cos a + cosB + cos” y + cos? 8​

Answers

Answered by tanudas85582
1

Step-by-step explanation:

REF.Image

Take 'O' as a corner

OA,OB,OC are 3 edges through the axes

Let OA=OB=OC=a

coordinates of O=(o,o,o)

A(a,o,o)B(o,a,o)C(o,o,a)

P(a,a,o)L(o,a,a)M(a,o,a)N(a,a,o)

The four diagonals OP,AL,BM,CN

Direction cosine of OP:a−o,a−o,a−o=a,a,a=1,1,1

Direction cosine of AL:o−a,a−o,a−o=−a,a,a=−1,1,1

Direction cosine of BM:a−o,o−a,a−o=a,−a,a=1,−1,1

Direction cosine of CN:a−o,a−o,o−a=a,a,−a=1,1,−1

∴ DC's of OP are

3

1

,

3

1

,

3

1

DC's of AL are

3

−1

,

3

1

,

3

1

DC's of BM are

3

1

,

3

−1

,

3

1

DC's of CN are

3

1

,

3

1

,

3

−1

Let l,m,n be dc's of line and line makes angle α

with OP :- cosα=l(

3

1

)+m(

3

1

)+n(

3

1

)=

3

l+m+n

Similarly cosβ=

3

−l+m+n

cosδ=

3

l+m−n

cosγ=

3

l−m+n

suaring and adding all the four

i.e ; cos

2

α+cos

2

β+cos

2

γ+cos

2

δ

=

3

1

[(l+m+n)

2

+(−l+m+n)

2

+(l−m+n)

2

+(l+m−n)

2

]

=

3

1

[4l

2

+4m

2

+4n

2

]=

3

4

(l

2

+m

2

+n

2

)

[∵l

2

+m

2

+n

2

=1]=

3

4

∴cos

2

α+cos

2

β+cos

2

γ+cos

2

δ=

3

4

Similar questions