Math, asked by goodSD, 1 year ago

If a ray stands on a line, then the sum of the adjacent angles so formed is 180°.​

Answers

Answered by grishma84
3
When a ray stands on a line, two adjacent angles are formed. We know that the angle lying on a straight line is 180°. The two angles being adjacent, make a total angle of 180° on the straight line. ... Thus, the two adjacent angles are right angles

I hope this answer will help you ☺☺☺
Answered by GodBrainly
4
\huge{\underline{\mathfrak{Solution:}}}


____________________________________


\sf{\large{\underline{\underline{Given \colon}}}}



A ray CD which stands on a line AB such that \sf\angle ACD and \sf \angle BCD \:  are \: formed.


____________________________________


\sf{\large{\underline{\underline{To \: Prove \colon}}}}



\sf \angle ACD + \angle BCD = 180 \degree.


____________________________________


\sf{\large{\underline{\underline{Construction \colon}}}}



Draw ray \sf CE \perp AB.


____________________________________


\sf{\large{\underline{\underline{Prove \colon}}}}


We have,


\angleACD = \angleACE + \angleECD .....(i)

and,

\angleBCD = \angleBCE - \angleECD .....(ii)

Adding (i) and (ii), we get

 \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \sf \angle ACD + \angle BCD = \angle A C E + \angle ECD + \angle BCE - \angle ECD \\ \sf \implies \: \: \: \: \: \: \: \angle ACD + \angle BCD = \angle A C E + \angle BCE \\ \sf \implies \: \: \: \: \: \: \: \angle ACD + \angle BCD = 90 \degree + 90 \degree \\ \sf \implies \: \: \: \: \: \: \: \angle ACD + \angle BCD = 180 \degree \\ \\ \sf Hence , \huge\boxed { \boxed{ \blue{\small \sf\angle ACD + \angle BCD = 180 \degree}}}



✔✔ Hence, it is proved ✅✅.

____________________________________
Similar questions