Math, asked by keyuraundhekar, 9 months ago

If a right circular cone has radius 4 cm and slant height 5 cm then what is its volume? options a) 16 π cm3 b) 14 π cm3 c) 12 π cm3 d) 18 π cm3

Answers

Answered by Anonymous
14

\huge\underline\mathbb{\red A\pink{N}\purple{S} \blue{W} \orange{E}\green{R :}}

Given that,

Find the Volume of Cone whose radius and height are :

\tt\:◼  \: Radius_{(Cone)} = 4cm

\tt\: ◼ \:  Slant \:  Height_{(Cone)} = 5 cm

\tt\: ◼ \:  Height_{(Cone)} = ?

To find the Height of cone. Use the formula of Slant height.

\tt\purple{ ◼  \: Slant  \: height = l² = h² + r²}

  • Substitute the values.

\tt\:⟹(5)² = h² + (4)²

\tt\:⟹25 = h² + 16

\tt\:⟹h² = 25 - 16

\tt\:⟹h² = 9

\tt\:⟹ h = \sqrt{9}

\tt\:⟹h = 3

\boxed{\bf{\purple{∴ Height\:of  \: cone=3cm}}}

\tt\:⟹Volume  \: of  \: cone = \frac{1}{3}\timesπ {r}^{2} h

\tt\:⟹\frac{1}{3}\timesπ\times{4}^{2}\times3</p><p>

\tt\:⟹16π

\underline{\boxed{\bf{\blue{∴ The \:  Volume  \: of  \: Cone  \: = 16π{cm}^{3}}}}}</p><p>

Answered by riya15042006
9

Radius = 4cm

Slant Height ( l) = 5cm

Height = ?

we know that ,

Slant Height =

 {l}^{2}  =  {h}^{2}  +  {r}^{2}

 {5}^{2}  =  {h}^{2}  +  {4}^{2}

25  =  {h}^{2}  + 16

 {h}^{2}  = 25 - 16

 {h}^{2}  = 9

h =  \sqrt{9}

h = 3

volume \: of \: cone =  \frac{1}{3} \times \pi {r}^{2}  h

 \frac{1}{3}  \times \pi \times  {4}^{2}  \times 3

 = 16\pi {cm}^{3}

Step-by-step explanation:

I hope it helps u dear friend ^_^♡♡

Similar questions