Math, asked by azazahmadpvt, 2 months ago

If a right circular cone shape building has radius 8m and slant height 17m, then what is its volume?

Answers

Answered by Anonymous
46

Given

⇒Radius = 8m

⇒Slant Height = 17m

To find

⇒Volume of Right circular cone

Formula

⇒Volume = πr²h/3

We have to find Height(h)

Formula

⇒l² = r² + h²

Now Put the value , we get h

⇒(17)² = (8)² + h²

⇒289 = 64 + h²

⇒h² = 289 - 64

⇒h² = 225

⇒h = 15 m

Now Put the value on formula

⇒Volume = πr²h/3

⇒Volume = 22/7 × 8×8×15/3

⇒Volume = 22/7 × 64 × 5

⇒Volume = 22/7 × 320

⇒Volume = 3.14 × 320

⇒Volume = 1004.8 cm³

Answer

⇒Volume of cone is  1004.8 cm³

Answered by Anonymous
40

Answer:

Given :-

Radius = 8 m

Slanght height = 17 m

To Find :-

Volume

Solution :-

At first we need to Find Height of the cone

 \sf \:  {l}^{2}  =  {r}^{2}  +  {h}^{2}

 \sf \:  {17}^{2}  =  {8}^{2}  +  {h}^{2}

 \sf \:   {17}^{2}  -  {8}^{2}  =  {h}^{2}

 \sf \: 289 - 64 =  {h}^{2}

 \sf \: 225 =  {h}^{2}

 \sf \:  \sqrt{225}  =  {h}^{2}

 \sf \: 15 = h

Now

 \sf \: Volume =  \dfrac{1}{3} \pi {r}^{2} h

 \sf \:Volume =   \dfrac{1}{3}  \times  \dfrac{22}{7}  \times (8) {}^{2}  \times 15

 \sf \: Volume =  \dfrac{1}{3}  \times  \dfrac{22}{7}  \times 64 \times 15

 \sf \: Volume =  \dfrac{22}{7}  \times 64  \times 5

 \sf \: Volume =  \dfrac{7040}{7}

 \sf \: Volume = 1005 \: c {m}^{3}

Similar questions