Math, asked by barkdoge12345, 11 months ago

If a rod of 2 cm diameter and 30 cm length is connected with a wire of 3m length and diameter 1 cm. Then find the total surface area.​

Answers

Answered by suchindraraut17
2

Total Surface Area =  \bold {506.78\ cm^2}

Step-by-step explanation:

Given,Diameter of rod = 2 cm

   Radius of the rod = 1 cm

Length of the rod = 30 cm

Length of the wire =3 m = 300cm

Diameter of the wire = 1 cm

Radius of the wire = 0.5 cm

We know that Total Surface Area of the Cylinder = 2\pi r(r+h)

Total Surface Area of the Rod =2\pi r(r+h)

                                                  = 2\times \frac{22}{7}\times 1\times(1+30)

Total Surface Area of the wire = 2\pi r(r+h)

                                                   =2\times \frac{22}{7}\times 0.5(0.5+300)

Total Surface Area = (Total Surface Area of the Rod + Total Surface Area of the wire) - Area of Base of wire

                                = [2\times \frac{22}{7}\times 1\times(1+30) + 2\times \frac{22}{7}\times 0.5(0.5+300)] - \pi r^2

                                =  [2\times \frac{22}{7}\times 1\times(1+30) + 2\times \frac{22}{7}\times 0.5(0.5+300)] - \frac{22}{7}(0.5)^2

                               = \bold {506.78\ cm^2}

Answered by Ranveerx107
13

Answer:

Step-by-step explanation:

Volume of the wire=Volume of the rod

⇒πr2(300)=π(2/2)^2(30)

r^2=\frac{\pi (1)^2(30)}{\pi 300}

r^2=\frac{1}{10}

r=\sqrt{} \frac{1}{10}

r=\frac{1}{\sqrt{10} }

d=2r=\frac{2}{\sqrt{10} }

d=\frac{2\sqrt{10} }{10}

d=\frac{\sqrt{10} }{5}  cm

Similar questions